
1.
2.
3.

Web Client Configuration Files
Configuration Files
Three levels of configuration exist within the i2b2 web client:

Configuration of web proxy and connection to various Hive PM Cells
Registration and configuration of code modules (plug-ins / Cells)
Configurations for individual code modules.

All configuration files are written in JSON (JavaScript Object Notation) and dynamically loaded by the framework using AJAX calls.

Hive Connection Configuration

All deployments of the i2b2 web client will require modification of the Hive Connection configuration file. This configuration file is located at /i2b2_config_d
. An example file is as follows: ata.js

 {
 urlProxy: "http://localhost/services/proxy/Service.asmx/webProxy" ,

 urlFramework: "js-i2b2/",
 //---
 // THESE ARE ALL THE DOMAINS A USER CAN LOGIN TO

 lstDomains: [
 domain: { "HarvardDemo",

 name: "VM Java 1.3 RC5",
 project: "Demo2",
 debug: true,
 urlCellPM: "http://services.i2b2.org/PM/rest/PMService/"

 },
 domain: , { "HMS_JAVA"

 name: , "Harvard Demo (Java 1.2)"
 debug: , true
 urlCellPM: "http://services.i2b2.org/PM/rest/PMService/"

 }
 //--

}

The first configuration attribute must be changed for every deployment. It should be set to point to web proxy cell. In all cases it must be the urlProxy your
same base URL (hostname and port) as the website that serves the default.htm file. For more information on the web Proxy communication with the hive
please see the document called .Web Client Architecture Guide

Name Null Type Description

urlProxy N String The full path URL for the i2b2 web services proxy server.

urlFramework N String The full path URL to the root js-i2b2 directory.

lstDomains N Array An array containing 1 or more domain definition data
objects.

The domain definition data object contains the following attributes for each data object:

Name Null Type Description

domain N String A short code used by the proxy server for the domain/group ID.

name N String A human-readable string containing the domain's name.

urlCellPM N String The full path URL that should be used by the back-end PM Cell.

project Y String Login to a specific project without prompting the user to select one from a
list.

isSHRINE Y Boolea
n

Should this domain use SHRINE processing functions?

debug Y Boolea
n

Are debugging messages logged? (uses additional memory).

1.
2.
3.
4.

Module Loader Configuration

The framework is aware of various code modules after they are registered in the main component list configuration file. This list is located within the /js-
 file in a section containing which has the following structure: i2b2/i2b2_loader.js JSON-based configuration information

 // THESE ARE ALL THE CELLS THAT ARE INSTALLED ONTO THE SERVER
i2b2.hive.tempCellsList = [

 code: { "PM",
 forceLoading : true // <------- this must be set to true for the PM cell!

 },
 code: , { "ONT" }
 code: , { "CRC" }
 code: , { "ANALYSIS"

 forceLoading , : true
 forceConfigMsg : {
 params : []

 }
 }

];

This JSON structure is used to register a list of cells / plug-ins that are able to be loaded if the user has been authorized to use them (via the data returned
from the cell during successful login). The above code listing has information for registering the following cells / modules (in order): Project Management

Project Management Cell (forced to automatically load when the framework is loaded)
Ontoloty Cell
Data Repository Cell
Plugin Viewer Module (used to manage all non-cell plug-in modules)

Unless a custom module is going to be running as an i2b2-compliant Cell module, further configuration options must be included in this file using the
"forcing" options below:

Configuration Option Description

forceLoading: (Boolean) Is the module automatically loaded during framework initialization

forceConfigMsg:
(Object)

This data object is automatically populated to when the module is i2b2.CELLCODE.cfg.config
loaded

These options can also be used to override configuration information that is being returned to the web client Framework from the Project Management Cell
during login authorization. The purpose of the setting is that it will force information to be automatically loaded and will create a forceConfigMsg
configuration value for later use. For additional information please see the document called . Web Client Plugin Developers Guide

Plug-in Configuration

For the framework to be able to properly load a plug-in module, information which defines the new module must be provided. This is accomplished by
creating a JSON-based configuration file within the plug-in's root directory. An example would be located at:

 /js-i2b2/cells/plugins/examples/ExampHello/cell_config_data.js

This file would have the following structure:

1.
2.
3.

 // This file contains a list of all files that need to be loaded dynamically
 // for this module. Every file in this list will be loaded after the module's Init()

 // function is called
 {

 files :["ExampHello.js"],
 css :["ExampHello.css"],
 config : {

 // additional configuration variables that are set by the system
 short_name : "Hello World",
 name : "Example #1 - Hello World",
 description : "This plugin cell demonstrates how to register your plugin

 with the i2b2 thin-client framework and display simple HTML.",
 category: , ["celless", "plugin", "examples"]
 plugin : {
 isolateHtml : false,
 html : {
 source : 'injected_screens.html',
 mainDivId : 'ExampHello-mainDiv'

 }
 }

 }
}

The configuration file has three main parts to it:

A list of JavaScript files
A list of HTML CSS files
A configuration section.

The files and CSS configuration sections are self-explanatory. All filenames listed will be prepended the with the plug-in's base directory to generate the full
file access location used by the framework in loading the files.

The configuration section contains various pieces of information that are used by the framework. They are explained below:

JSON Configuration
Variable

Description

config.short_name Is displayed in the title tab area of the plug-in viewer's display window.

config.name The title string that is displayed in the plug-in viewer's listing window.

config.description The description that is displayed in the plug-in viewer's listing window.

config.category A list of categories that this plug-in is a member of. All plug-ins must include "plugin" value. If the plug-in does not have its own backend cell
then "celless" value should also be present.

config.icons JSON object defining one or more icon files. These files must be located in the directory of the plug-in's base directory.assets

config.icons.size32x32 Filename for 32x32 pixel icon used in the plug-in listing window when in detailed view mode. (The fill must be in the plug-in's assets
directory).

config.icons.size16x16 Filename for 16x16 pixel icon used in the plug-in listing window when in summary view mode. (The fill must be in the plug-in's assets
directory).

config.plugin JSON object which defines and configures the module as a plug-in.

config.plugin.isolateHtml Boolean, should the framework isolated the plug-in's HTML an IFRAME.

config.plugin.html JSON object that contains information about the plug-in's display HTML.

config.plugin.htm.source Filename for the plug-in's display HTML (in the local directory).assets

Be Careful

It is important to note that all version of Microsoft Internet Explorer limit the number of dynamically loaded style sheets to a total of 31 files. The
web client framework uses several style sheets and each cell or plug-in may have dynamically loaded style sheets as well.

An important best practice is to only define one CSS file in your plug-in's configuration file.

To use more than one CSS file in your plug-in, create a CSS file to subsequently load your other CSS files using the @import (file.css)
command.

config.plugin.html.
mainDivId

The unique ID of the HTML Element (in the above declared source file) whose contents will be initially displayed.

Most of the
information
within the
configuration
section is used
by the plugin
viewer
subsystem in
ways that are
reflected in the
user interface.

	Web Client Configuration Files

