

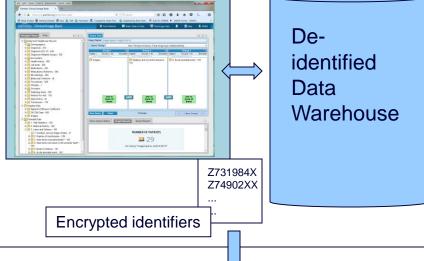
Overall Description of i2b2

Shawn Murphy MD, Ph.D.

Mass General Brigham and Harvard Medical School

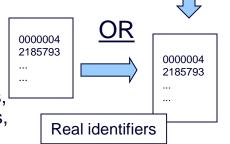
November 14, 2020

"Informatics for Integrating Biology and the Bedside (i2b2)" what is it?

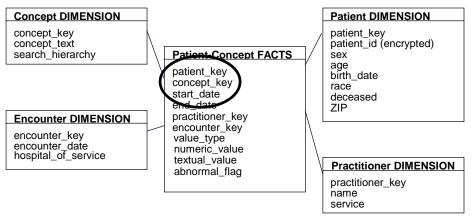

- Software for explicitly organizing and transforming personoriented clinical data to a way that is optimized for clinical genomics research
 - Allows integration of clinical data, trials data, and genotypic data
- A portable and extensible application framework
 - Software is built in a modular pattern that allows additions without disturbing core parts
 - Available as open source at https://www.i2b2.org

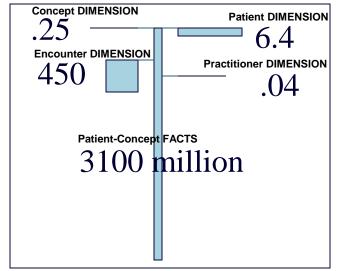
i2b2 used for Big Clinical Data

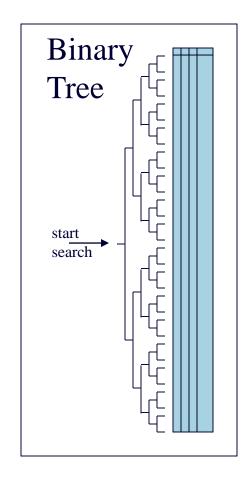
1) Queries for aggregate patient numbers

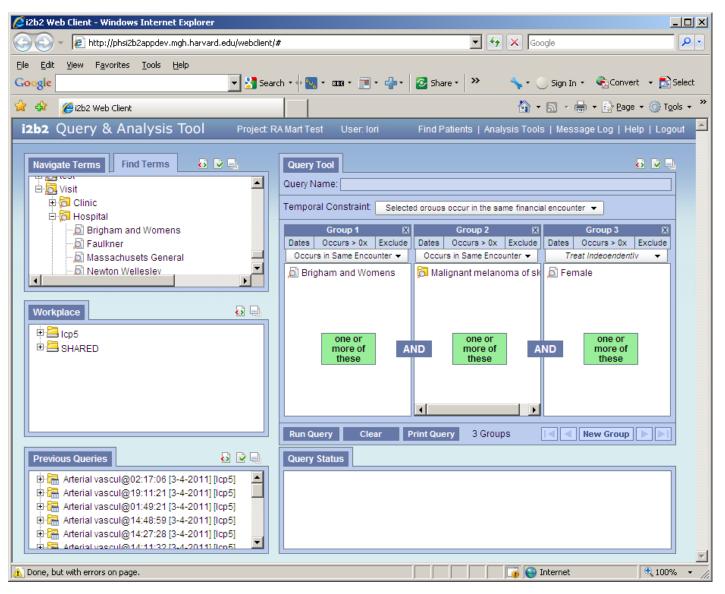

- Warehouse of in & outpatient clinical data
- 6.7 million Partners Healthcare patients
- 3.1 billion diagnoses, medications, genomics, procedures, laboratories, & physical findings coupled to demographic & visit data
- Authorized use by faculty status
- Clinicians can construct complex queries
- Queries cannot identify individuals, internally can produce identifiers for (2)

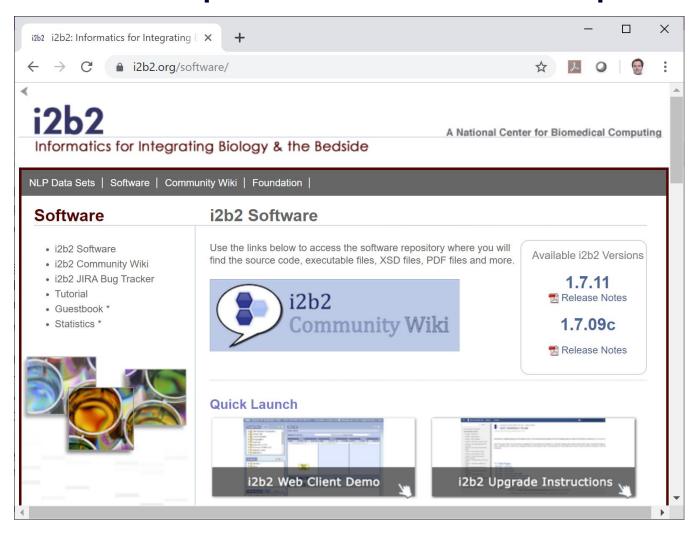
Query construction in web tool




2) Returns detailed patient data

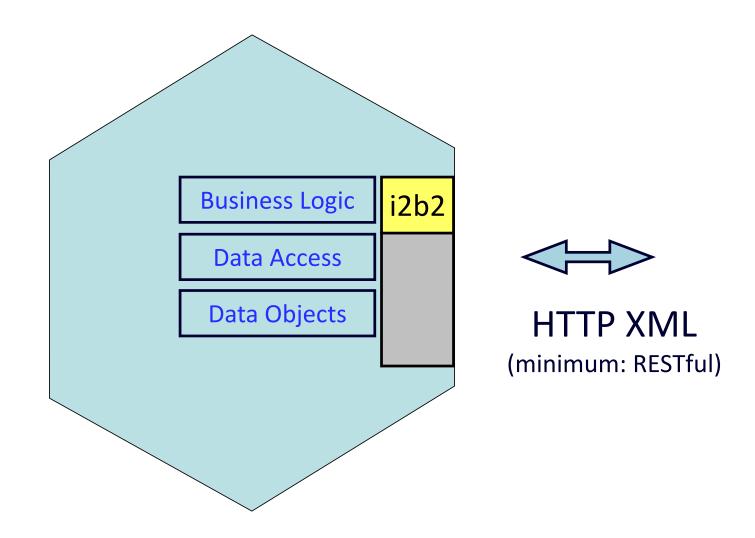

- Start with list of specific patients, usually from (1)
- Authorized use by IRB Protocol
- Returns contact and PCP information, demographics,
 providers, visits, diagnoses, medications, procedures,
 laboratories, microbiology, reports (discharge, LMR,
 operative, radiology, pathology, cardiology, pulmonary,
 endoscopy), and images into a Microsoft Access
 database and text files.


Enabled by Star Schema

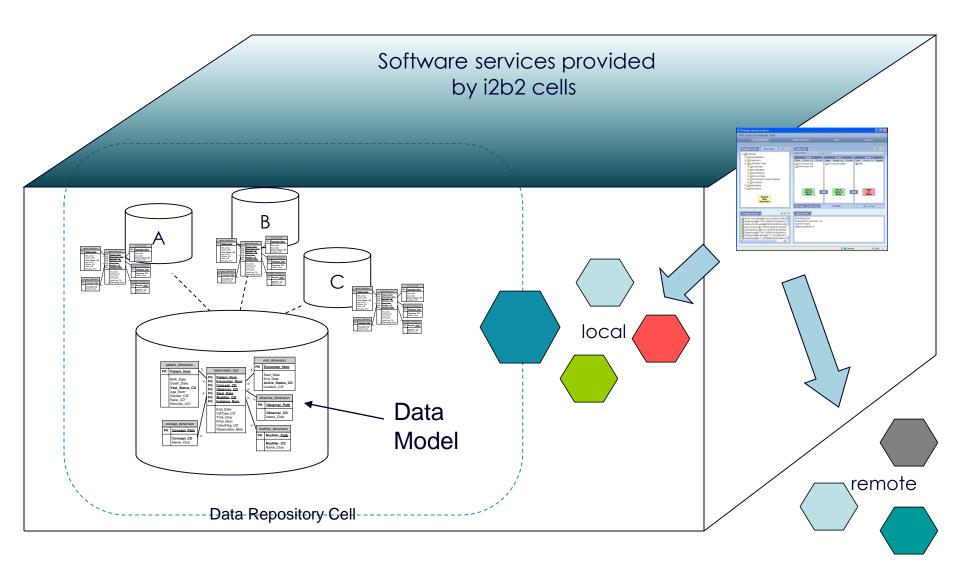


Interogation can occur through i2b2 web client

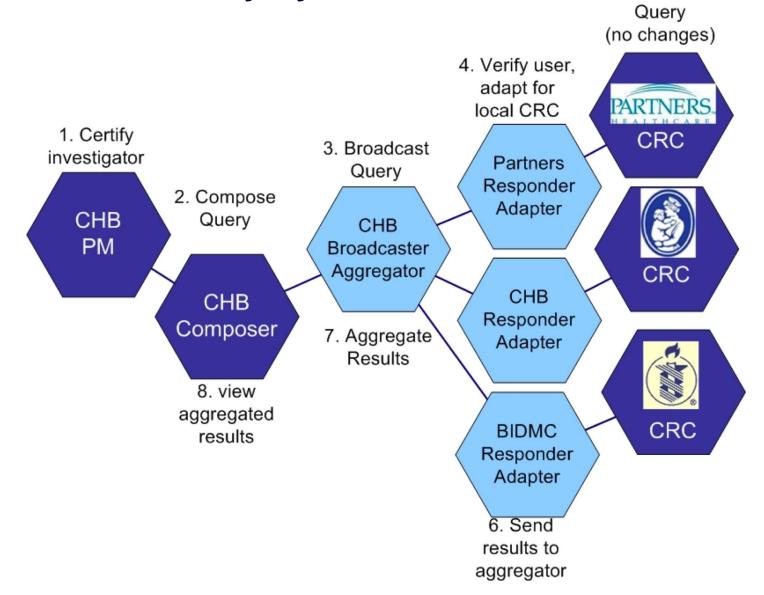
12b2 Software components are distributed as open source



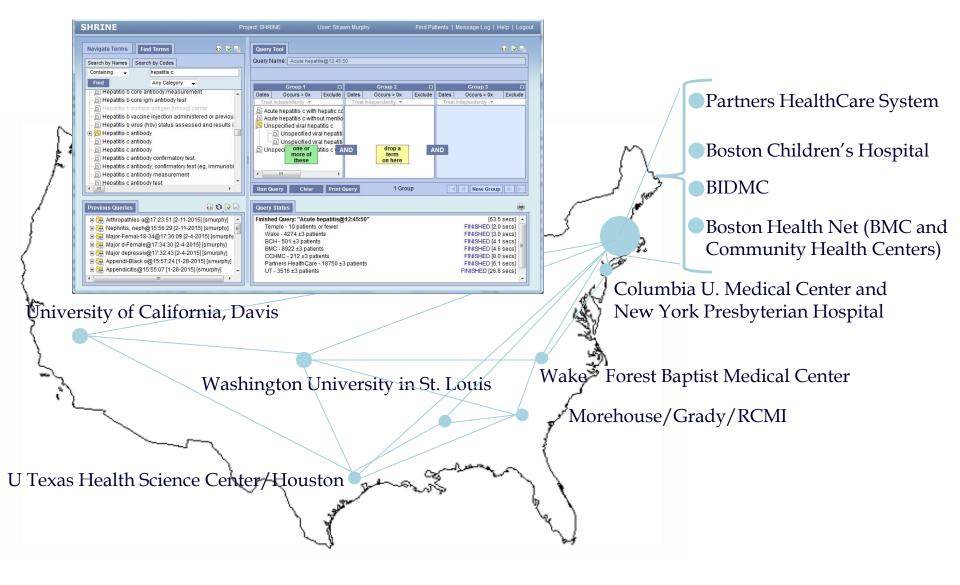
I2b2 Community Software Modules contributed as "Cells"



https://community.i2b2.org/wiki/display/i2b2/i2b2+Community+Projects


i2b2 Cell: The Canonical Software Module

An i2b2 Environment is built from i2b2 Cells



Distributed Query System

5. I2B2 CRC

Federated Queries

Implementations

CTSA's

- Boston University
- Case Western Reserve University (including Cleveland Clinic)
- Children's National Medical Center (GWU), Washington D.C.
- Duke University
- Emory University (including Morehouse School of Medicine and Georgia Tech)
- Harvard University (including Beth Israel Deaconness Medical Center, Brigham and Women's Hospital, Children's Hospital Boston, Dana Farber Cancer Center, Joslin Diabetes Center, Massachusetts General Hospital)
- Medical University of South Carolina
- Medical College of Wisconsin
- Oregon Health & Science University
- Penn State Milton S. Hershey Medical Center
- Tufts University
- University of Alabama at Birmingham
- University of Arkansas for Medical Sciences
- University of California Davis
- University of California, Irvine
- University of California, Los Angeles*
- University of California, San Diego*
- University of California San Francisco
- University of Chicago
- University of Cincinnati (including Cinncinati Children's Hospital Medical Center)
- University of Colorado Denver (including Children's Hospital Colorado)
- University of Florida
- University of Kansas Medical Center
- University of Kentucky Research Foundation
- University of Massachusetts Medical School, Worcester
- University of Michigan
- University of Pennsylvania (including Children's Hospital of Philadelphia)
- University of Pittsburgh (including their Cancer Institute)
- University of Rochester School of Medicine and Dentistry
- University of Texas Health Sciences Center at Houston
- University of Texas Health Sciences Center at San Antonio
- University of Texas Medical Branch (Galveston)
- University of Texas Southwestern Medical Center at Dallas
- University of Utah
- University of Washington
- University of Wisconsin Madison (including Marshfield Clinic)
- Virginia Commonwealth University
- Weill Cornell Medical College

Academic Health Centers (does not include AHCs that are part of a CTSA):

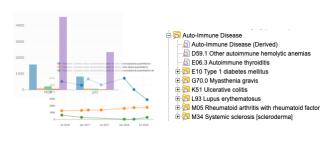
- Arizona State University
- City of Hope, Los Angeles
- Georgia Health Sciences University, Augusta
- Hartford Hospital, CN
- HealthShare Montana
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERICK), Boston
- Nemours
- Phoenix Children's Hospital
- Regenstrief Institute
- Thomas Jefferson University
- University of Connecticut Health Center
- University of Missouri School of Medicine
- University of Tennessee Health Sciences Center
- Wake Forest University Baptist Medical Center

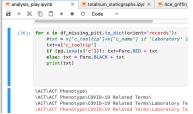
HMOs:

- Group Health Cooperative
- Kaiser Permanente

International:


- Georges Pompidou Hospital, Paris, France
- Hospital of the Free University of Brussels, Belgium
- Inserm U936, Rennes, France
- Institute for Data Technology and Informatics (IDI), NTNU, Norway
- Institute for Molecular Medicine Finland (FIMM)
- Karolinska Institute, Sweden
- Landspitali University Hospital, Reykjavik, Iceland
- Tokyo Medical and Dental University, Japan
- University of Bordeau Segalen, France
- University of Erlangen-Nuremberg, Germany
- University of Goettingen, Goettingen, Germany
- University of Leicester and Hospitals, England (Biomed. Res. Informatics Ctr. for Clin. Sci)
- University of Pavia, Pavia, Italy
- University of Seoul, Seoul, Korea


Companies:

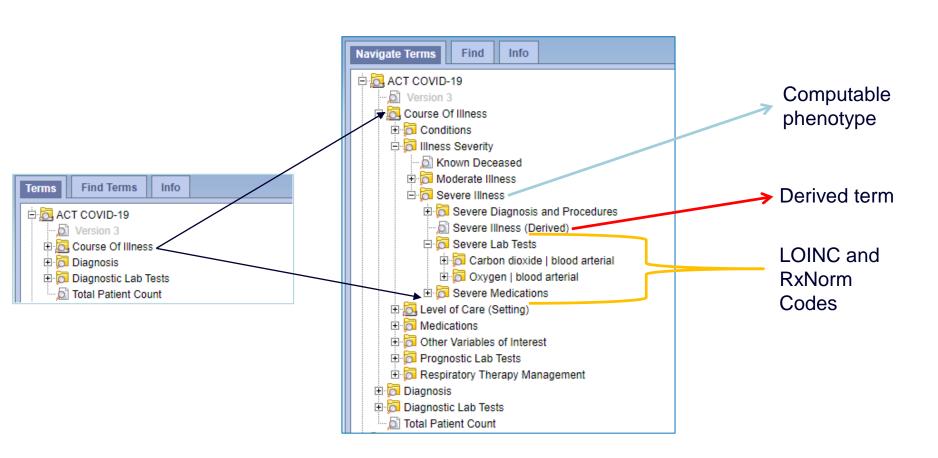

- Johnson and Johnson (TransMART)
- GE Healthcare Clinical Data Services

Research Pipeline for ACT

Query for sites with adequate data

Quality

Computed Phenotype

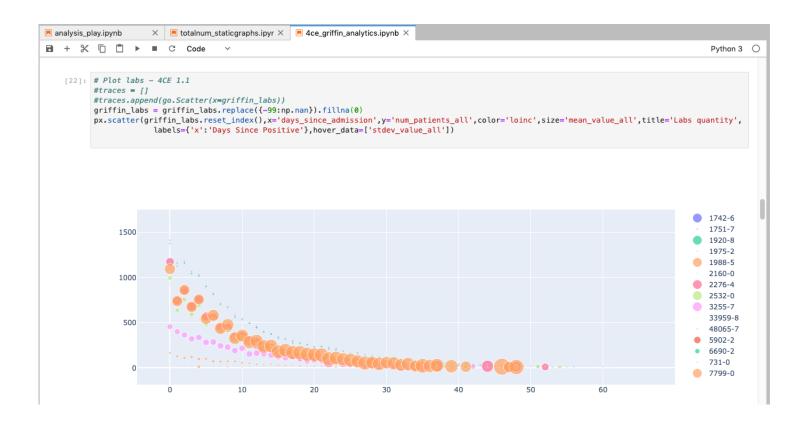

Local **Analytics**

Validation

Pooling Results

Publication

Computable phenotype: Severe illness in COVID-19

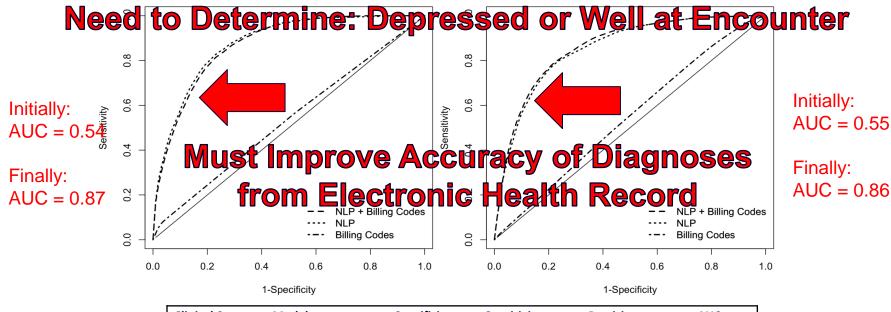

Simple Analytic Table Generator for i2b2

To generate a request template, drag a previous query to the Patient(s) box below. Any concepts found in the query will be automatically added. Additional concepts can be added by dragging them to the Concept(s) box below. Each concept in the list will be a column in the table request. Use the Aggregation Option column to select how columns of data will be aggregated. Patient(s): 45-54-Diabe-Encou@12:39:58 [Patient Count: 20995] ✓ Include concepts from the Previous Query Concept(s): Drag & Drop additional concepts here from Navigate Terms or a Previous Query Append concepts to the list below **Aggregation Option Include In Request** Concept **Constraints** Value 🛊 🕜 Patient Number Value \$ Gender Age Value 🛊 🔐 Race Value 🛊 🕜 Existence (Yes/No) \$ 45-54 years old [Set Date] Date (First) Diabetes mellitus (>766000) [Set Date] Encounter-based (>7632000) Count

Generates One-Subject-Per-Row Tables

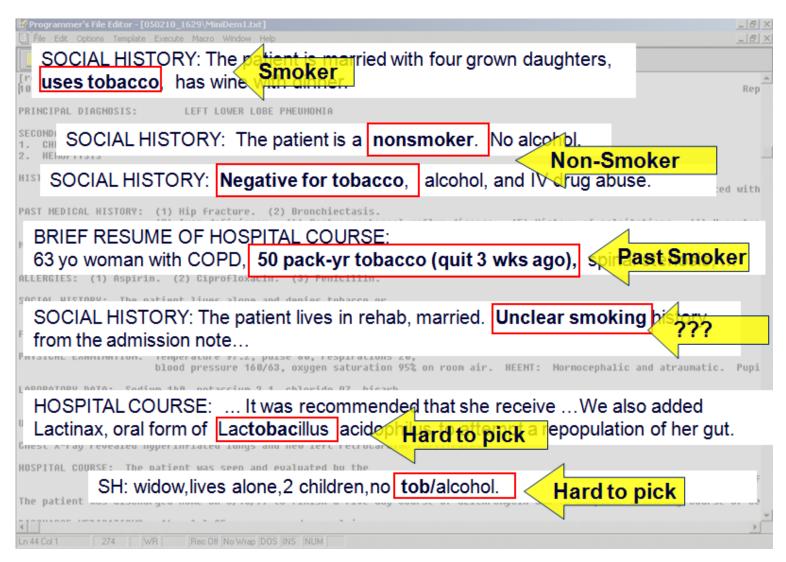
Patient ID	Date of First DX Diabetes	Most Recent A1C	Average A1C	Name of Antidiabetic Agent	
104	3/4/2002	5.4	7.2	Miglitol	
1829	9/11/2013	12.1	9.4	Insulin	
2161	4/23/2000	4.1	6.2	Glipizide	

Then Shared Analytics Scripts run on Generated Table

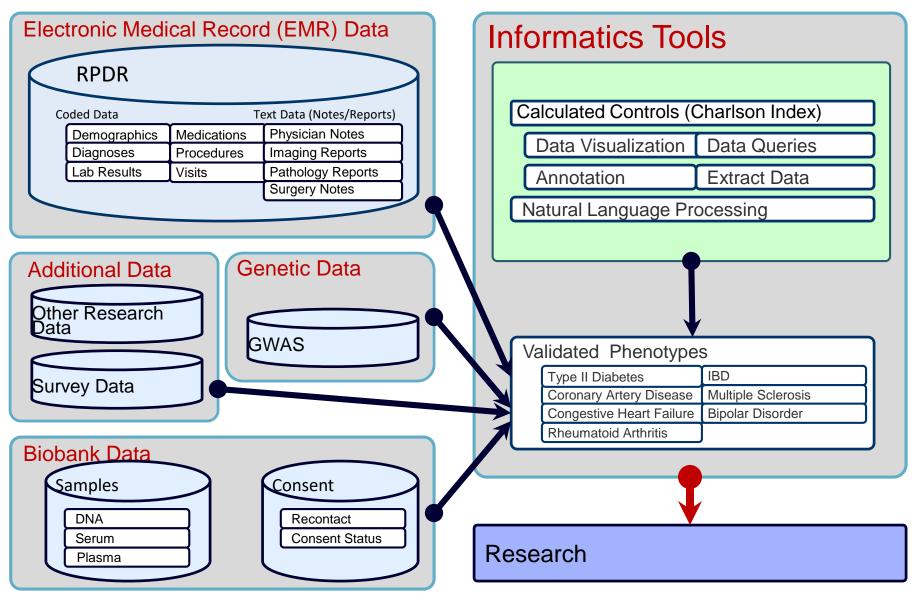


Improving Quality of i2b2 Queries through Machine Learning

Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model

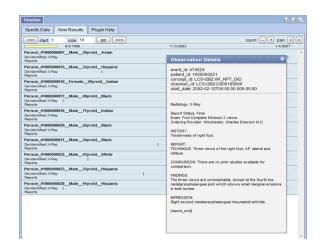

R. H. Perlis^{1,2*}, D. V. Iosifescu^{1,3}, V. M. Castro⁴, S. N. Murphy⁵, V. S. Gainer⁴, J. Minnier⁶, T. Cai⁶, S. Goryachev⁴, Q. Zeng⁷, P. J. Gallagher², M. Fava¹, J. B. Weilburg¹, S. E. Churchill⁸, I. S. Kohane9 and J. W. Smoller2

Use Phenotyping Algorithms to define cohorts of treatmentresistant and treatmentresponsive depression

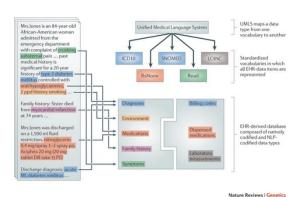


Clinical Status	Model	Specificity	Sensitivity	Precision	AUC
Depressed	Billing Codes	0.95	0.09 (0.03)	0.57 (0.14)	0.54 (0.02)
Depressed	NLP	0.95	0.42 (0.05)	0.78 (0.02)	0.88 (0.02)
Depressed	NLP + Billing Codes	0.95	0.39 (0.06)	0.78 (0.02)	0.87 (0.02)
Well	Billing Codes	0.95	0.06 (0.02)	0.26 (0.27)	0.55 (0.03)
Well	NLP	0.95	0.37 (0.06)	0.86 (0.02)	0.85 (0.02)
Well	NLP + Billing Codes	0.95	0.39 (0.07)	0.85 (0.02)	0.86 (0.02)

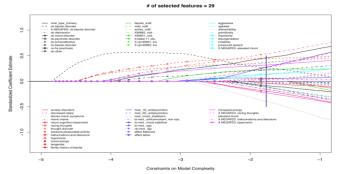
Use NLP to extract the relevant features from the set of patient notes.

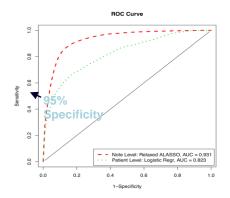


Data Integration in Biobank Portal

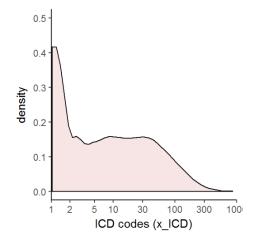


Curating a Disease Algorithm with a Gold Standard

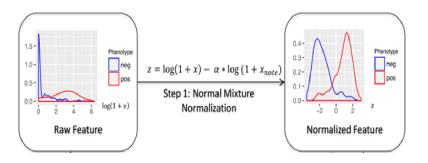

1. Create a gold standard training set.


2. Create a comprehensive list of features from patient's electronic data that describe the disease of interest

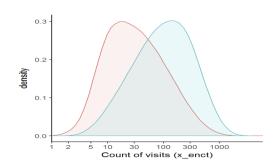
3. Develop the classification algorithm. Using the data analysis file and the training set from step 1, assess the frequency of each variable. Remove variables with low prevalence. Apply adaptive LASSO penalized logistic regression to identify highly predictive variables for the algorithm

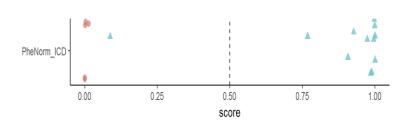


4. Apply the algorithm to all subjects in the superset and assign each subject a probability of having the phenotype



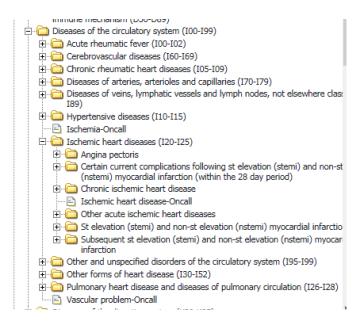
Curating a Disease Algorithm with a Silver Standard


1. Query for total number of mentions of disease

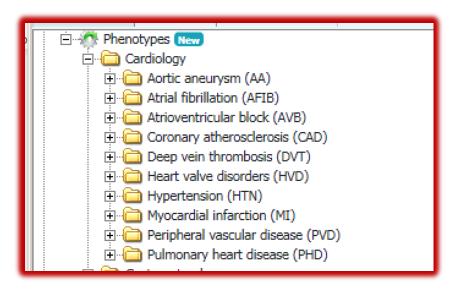

2. Fit the mentions of disease to two curves normalizing for # of visits

3. Resolve the curves and separate into two groups, these are actually equal to patients with and without the disease

4. Apply the algorithm to all subjects and assign each subject a probability of having the phenotype

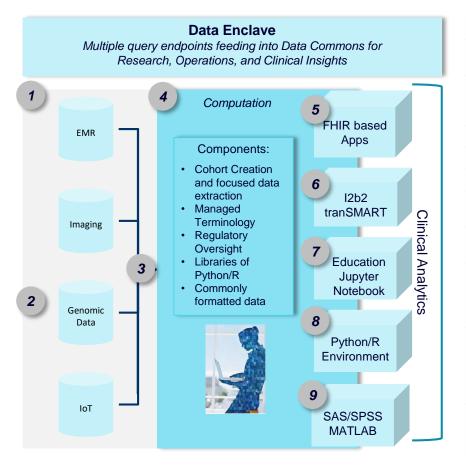

	Computable Phenotype Dashboard
--	-----------------------------------

Phenoty					notypes Me	ethods	About us			
	category 👇	PheWAS_code 🖣	abbr 🏺	PheWAS_name	model 🔷	ICD_PPV \(\phi \)	ICD_AUC 🌲	AUC 🏺	PPV 	TPR ♦
1	ONC	PheWAS:189.21	BLCA	Bladder cancer	PheNorm_ICD	0.80	0.903	1.000	1.00	0.42
2	ONC	PheWAS:204	LEUK	<u>Leukemia</u>	PheNorm_ICD	0.73	1.000	1.000	1.00	0.91
3	PSYCH	PheWAS:297.1	SI	Suicidal ideation	PheNorm_ICDNLP	0.93	0.786	1.000	1.00	0.43
4	PSYCH	PheWAS:305.2	EATD	Eating disorder	PheNorm_ICDNLP	0.53	0.482	1.000	1.00	1.00
5	NEURO	PheWAS:327.4	INSOM	<u>Insomnia</u>	PheNorm_ICDNLP	0.93	0.821	1.000	1.00	0.50
6	CARDIO	PheWAS:452.2	DVT	Deep vein thrombosis	PheNorm_ICDNLP	0.87	0.692	1.000	1.00	1.00
7	NEURO	PheWAS:817	CONC	Concussion	PheNorm_NLP	0.73	0.682	1.000	1.00	0.27
8	МЕТАВ	PheWAS:250.1	T1DM	Type 1 diabetes	PheNorm_ICD	0.17	0.882	0.984	0.91	0.91
9	ONC	PheWAS:184.11	OVCA	Ovarian cancer	PheNorm_ICDNLP	0.60	0.926	0.981	1.00	0.67
10	ONC	PheWAS:182	UTCA	Uterine cancer	PheNorm_ICD	0.50	0.867	0.980	1.00	0.86
11	GI	PheWAS:555.1	CD	Crohn's disease	PheNorm_mean	0.54	0.961	0.980	0.90	0.97

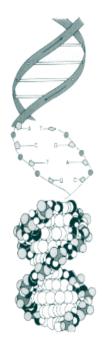

RESULT


Accurate and Simple Disease Labels for Queries

Complicated



Simple



Digital Twin for Continuously Assessing Patient

Data Enclave							
1	Enable Data Extracts, perhaps some are Federated						
2	Combine and Link data, put in common OMOP/i2b2 format						
3	Conduit to Data Enclave						
Tech	Technical Solution Development						
4	Healthcare Ready Bundle						
Research and Clinical Application Projects							
- 5 -	FHIR based SMART Apps						
6	I2b2 tranSMART with Fractalis plugin (next version of SmartR plugin)						
7	Jupyter Notebook with AI Visualizations – code can advance to production						
- 0-	Python/R Environment full interactive development in Data Lake						

I2b2, SHRINE, and SMART Information and Software on the Web

i2b2 Homepage (https://www.i2b2.org)
i2b2 Software (https://www.i2b2.org/software)
i2b2 Community Site (https://community.i2b2.org)
I2b2 tranSMART Site (https://i2b2transmart.org/)

NIH/NCBC/BD2K; /NIMH; /NCATS; /NIBIB; /NHGRI

NIH R01 EB014947 NIH U54 HG007963 NIH U54 LM008748 NIH R01 AT006364 NIH U01 HG008685 NIH R01 AT005280 PCORI 282364.5077585.0007 NIH P01 AT006663

