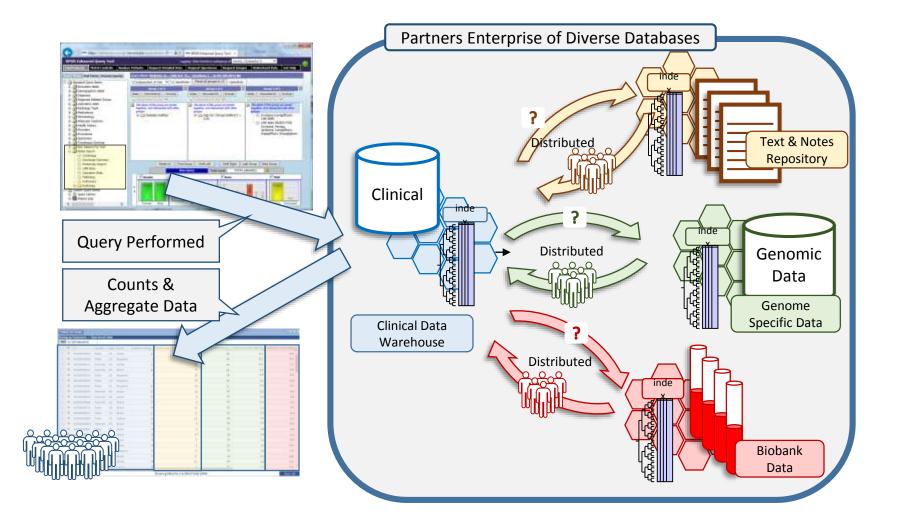
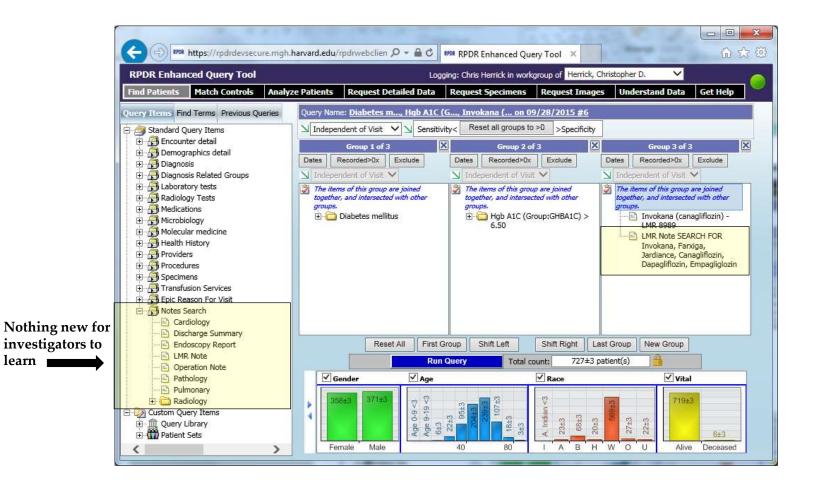


i2b2

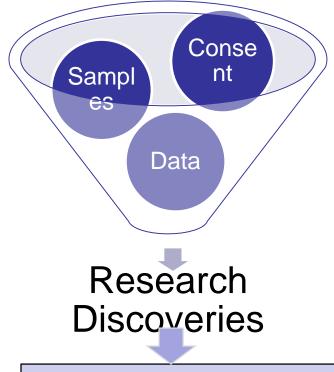
Joining with Big Data to Improve Healthcare Research Quality


Shawn Murphy MD, Ph.D.

Using Big Data to Improve Healthcare



The Researcher Querying the System interacts with a Simple Query Tool



Can Find Patients and Gather Data Based on New Types of Searches ...

The Partners Biobank

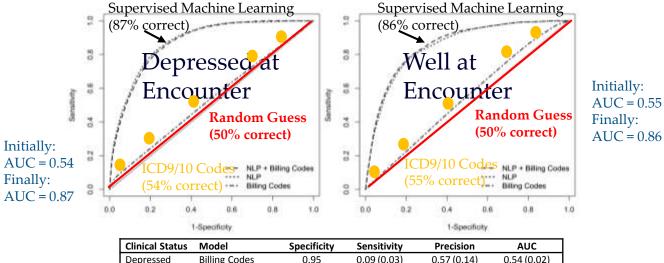
- The Partners Biobank provides samples (plasma, serum, and DNA) collected from consented patients.
- 40,000 patients have consented to date, 10000 have been genotyped.
- Samples are available for distribution to Partners investigators* to help identify novel Personalized Medicine opportunities that reduce cost and provide better care

*with required approval from the Partners Institutional Review Board (IRB).

Improved Clinical Care for All Patients

Unpredictable Quality Using Raw ICD9/10 Codes

Phenotype	Count with ICD-9/ICD- 10 Code	Count (90% positive predictive value)	Count with Genotype Data
Asthma	7618	3322	805
Bipolar Disorder	1754	219	84
Breast Cancer	2101	1711	378
Congestive Heart Failure	10160	4597	1859
Coronary Artery Disease	1435	803	236
Crohn's Disease	5177	700	350
Depression	11154	4273	1074
Epilepsy	2351	1211	381
Gout	2464	1828	566
Hypertension	20788	16995	4553
Multiple Sclerosis	602	320	58
Obesity	10245	12179	3191
Rheumatoid Arthritis	3475	878	261
Schizophrenia	509	83	14
Type 1 Diabetes	2196	232	61
Type 2 Diabetes	7123	4385	1268
Ulcerative Colitis	1359	624	157

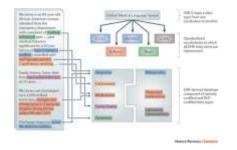

May 4, 2016, n ~ 40,000

Phenotyping Algorithms to define cohorts of treatment-resistant and treatment-responsive depression

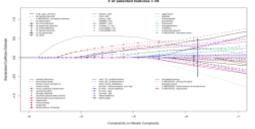
Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model

R. H. Perlis^{1,3*}, D. V. Iosifescu^{1,3}, V. M. Castro¹, S. N. Murphy³, V. S. Gainer⁴, J. Minnier⁶, T. Cai⁴, S. Goryachev¹, Q. Zeng³, P. J. Gallagher⁴, M. Fava¹, J. B. Weilburg¹, S. E. Churchill⁶, I. S. Kohane⁹ and J. W. Smoller²

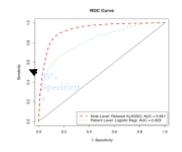
Depressed	Billing Codes	0.95	0.09 (0.03)	0.57 (0.14)	0.54 (0.02)
Depressed	NLP	0.95	0.42 (0.05)	0.78 (0.02)	0.88 (0.02)
Depressed	NLP + Billing Codes	0.95	0.39 (0.06)	0.78 (0.02)	0.87 (0.02)
Well	Billing Codes	0.95	0.06 (0.02)	0.26 (0.27)	0.55 (0.03)
Well	NLP	0.95	0.37 (0.06)	0.86 (0.02)	0.85 (0.02)
Well	NLP + Billing Codes	0.95	0.39 (0.07)	0.85 (0.02)	0.86 (0.02)



Creating Quality Data with Supervised Machine Learning


1. Create a gold standard training set.

anioni in " second	
Next Address, Add. Sector, and Sector and Address and Address and Sector and	The output of the test Image: State and the test of test of the test of test o

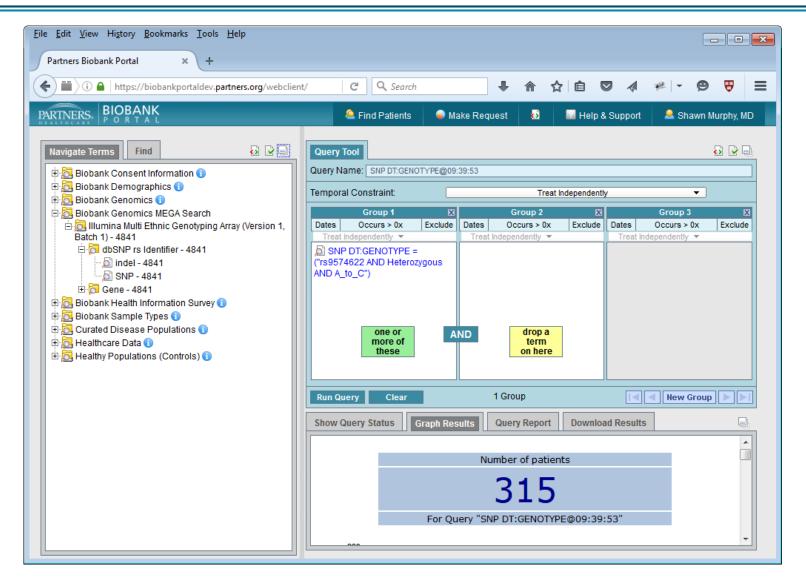

2. Create a comprehensive list of features (concepts/variables) that describe the phenotype of interest

3. Develop the classification algorithm. Using the data analysis file and the training set from step 1, assess the frequency of each variable. Remove variables with low prevalence. Apply adaptive LASSO penalized logistic regression to identify highly predictive variables for the algorithm

4. Apply the algorithm to all subjects in the superset and assign each subject a probability of having the phenotype

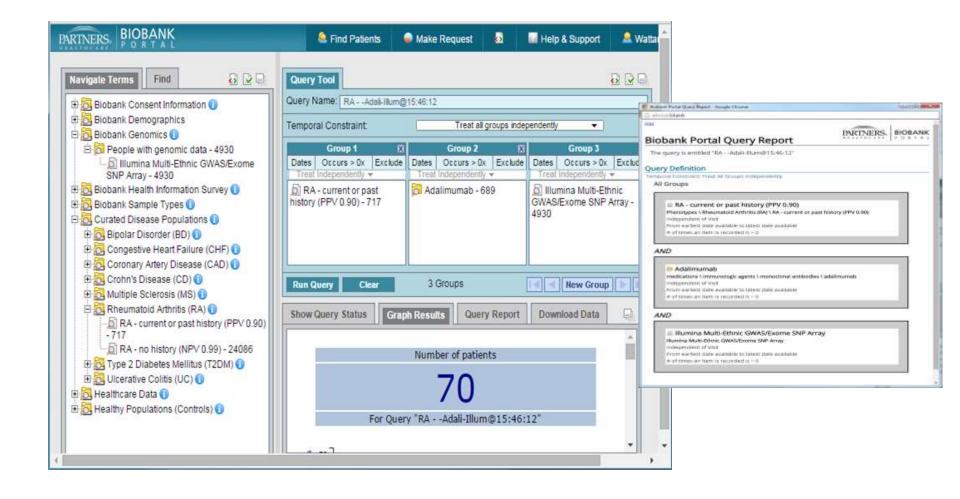
Phenotype	Count with ICD-9/ICD- 10 Code	Count (90% positive predictive value)	Count with Genotype Data
Asthma	7618	3322	805
Bipolar Disorder	1754	219	84
Breast Cancer	2101	1711	378
Congestive Heart Failure	10160	4597	1859
Coronary Artery Disease	1435	803	236
Crohn's Disease	5177	700	350
Depression	11154	4273	1074
Epilepsy	2351	1211	381
Gout	2464	1828	566
Hypertension	20788	16995	4553
Multiple Sclerosis	602	320	58
Obesity	10245	12179	3191
Rheumatoid Arthritis	3475	878	261
Schizophrenia	509	83	14
Type 1 Diabetes	2196	232	61
Type 2 Diabetes	7123	4385	1268
Ulcerative Colitis	1359	624	157

May 4, 2016, n ~ 40,000

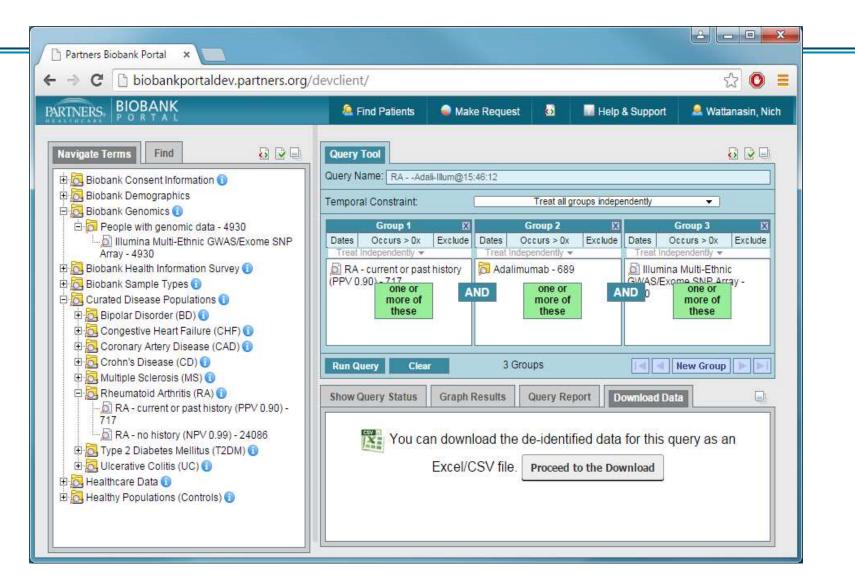


Phenotype	Count with ICD-9/ICD- 10 Code	Count (90% positive predictive value)	Count with Genotype Data
Asthma	7618	3322	805
Bipolar Disorder	1754	219	84
Breast Cancer	2101	1711	378
Congestive Heart Failure	10160	4597	1859
Coronary Artery Disease	1435	803	236
Crohn's Disease	5177	700	350
Depression	11154	4273	1074
Epilepsy	2351	1211	381
Gout	2464	1828	566
Hypertension	20788	16995	4553
Multiple Sclerosis	602	320	58
Obesity	10245	12179	3191
Rheumatoid Arthritis	3475	878	261
Schizophrenia	509	83	14
Type 1 Diabetes	2196	232	61
Type 2 Diabetes	7123	4385	1268
Ulcerative Colitis	1359	624	157

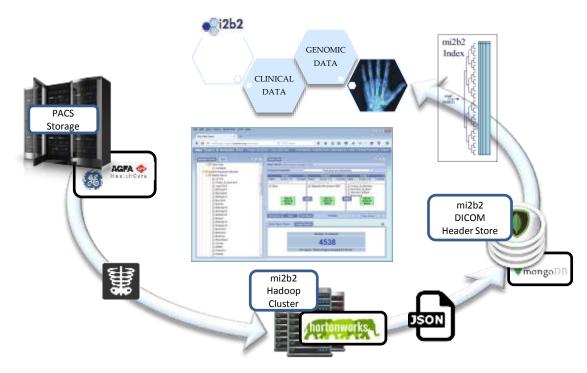
May 4, 2016, n ~ 40,000



Query 1.68 billion rows of Genomic Data for Specific Variants



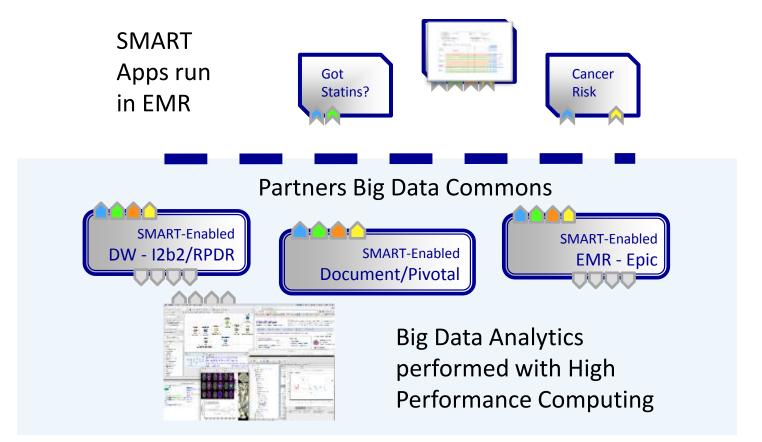
High Quality Data Available for Genomics Queries



Partners Biobank Portal – Download De-Identified Data

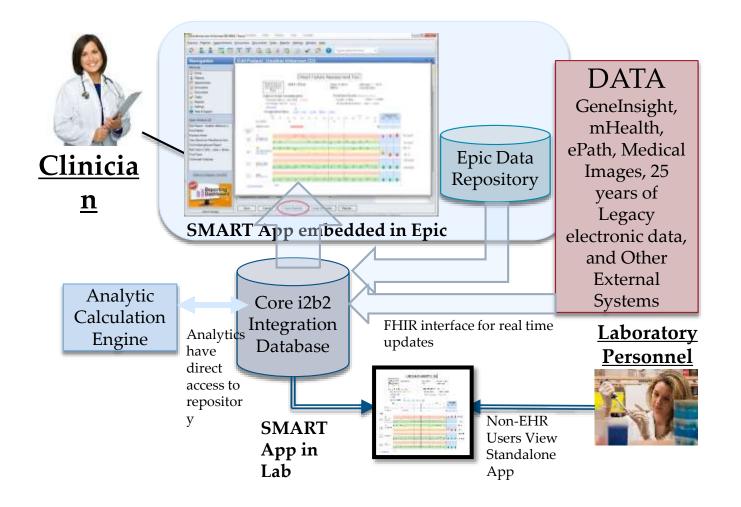
Imaging – DICOM Image Index allows imaging data to join other clinical and genomic data in queries

- Investigators will be able to define sets of patients who are relevant to their research by defining the specific type of image required for their analysis (e.g. high resolution).
- Through the Big Data Commons, Investigators will be able to link this patient cohort to other available data (genomic data, biobank samples, other research data, EHR data, etc)


Impact to Clinical care

Linking to EMR with SMART "Apps"

Published 2011



Enabling Innovation to reach into EMR

Bringing Big Data into Clinical Care with Open App Development

Out of the Box - SMART Apps link Big Data to the EMR

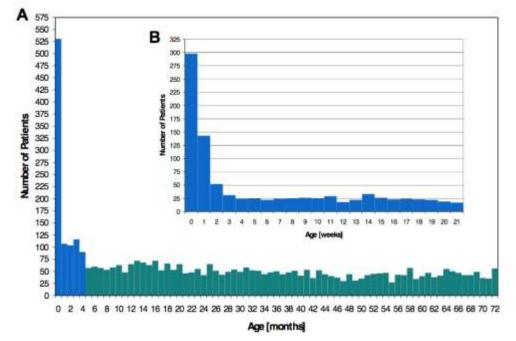
- Substitutable Medical Application and Reusable Technology Started with grant from the Office of the National Coordinator
- Paradigm is similar to Mobile Apps with a proposed standard interface using FHIR (Fast Healthcare Interoperable Resource)

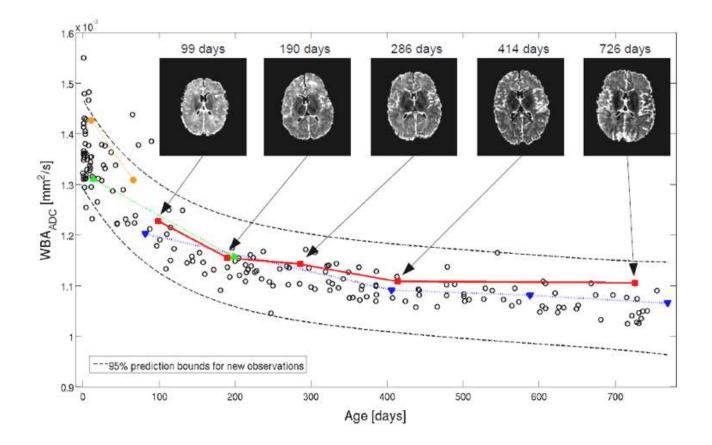
What Big Data can do for the Everyday Clinician -Finding Similar Patients

- Looking at similar patients can help predict:
 - Future outcomes and responses to therapy
 - Course of disease
 - Penetrance of genetic variants
 - Likelihood that a diagnostic pathway might be fruitful
- Finding similar patients is very computationally intensive, but a perfect opportunity for combining data from the Electronic Health Record, Specialized Health Databases, Analytics from Big Data Queries, and presentation in SMART Apps
- Presentation of results can be greatly enhanced with engaging visualizations for the provider making difficult, complex decisions

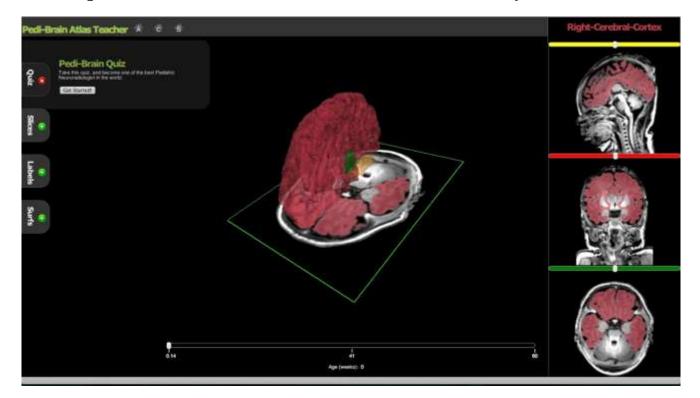
Growth Charts reinvented as a SMART app – is this child similar to other children?

https://gallery.smarthealthit.org/boston-childrens-hospital/growth-chart


() () (Imputtinger-datal seatheathit.org/growth-chart/				1	C Q Short		÷ #	***	4 + -		
Paul Luttres Termale 000 01Aug2003 are 12y 8m D		an 12y 8m	corrected age: 12y 8m								
		(AND WATHINGTON DIRECTOR)			C GRAPHS 🗮 TABLE			A PARENT			
		ette a	E + 2 Years		0 - 35 Years Pit to Ape			to Age	Barris Co.d		
Last recording	04Feb2013	By Gm			1	ACU COR 🙆	kgicm 💮	Langua	ge: English	•	ANI IN
Entry Date		08Aug200E	05Aug2007	07Aug2008	05Feb2010	06Aug2010	1488#2011	06Aug2011	11Mar2012	125ep2012	04Feb2013
Age		5y 64	4y 60	5y 50	By Gm	7y 5d	3 y 7m	By 5d	by tm	Dy 1m	9y 6m
Annotation	See at 1		1000	-	=	-			-	_	-
Length	400	87.6	95	100.2	108.2	111.5	114	118.1	119.6	122.0	123.9(7)
Pettentie	5	. 2	4	3.	2	- 2	2	- 4	2	3	.2
Z Score	2	-2.1	्यंत	-1.9	-2	-2	-2.1	-1.7	12	12	-2
Velocity //	anvyr	-5.6	:50	自由	52	(fi:1)	1.2	3.9	4.8	4	To here
Weight	10	12.1	10.7	38.1	17.8	18.7	20.3	21.7	23.6	24.2	36.41
Prozentie		0.	0.	4	0.		2	11	35	12	
2 Scure	2	-1/1	-16	-17	4.6	-7.6	1.1	-5.2	-1	-1.2	12.8
Veccity	ing/ye	.3.80	1.0	2.4	2.2	23	2.2	1.6	0.0	0.8	To here
Head C	- Cm	-	-	-	-	-	-	-	-	-	-
Percervile	1			-	-			-			-
I Score	2	1	244	<u>1</u>	-		1000 C		1	<u> </u>	-
Velocity	anyyr		1.00	-		344		-		-	To here
EMI .	kg/m22	18.8	4.6	+#	48.4	18.1	18.0	48.4	10.0	12.1	


Find Normal MRI's at All Ages 0-6 y/o

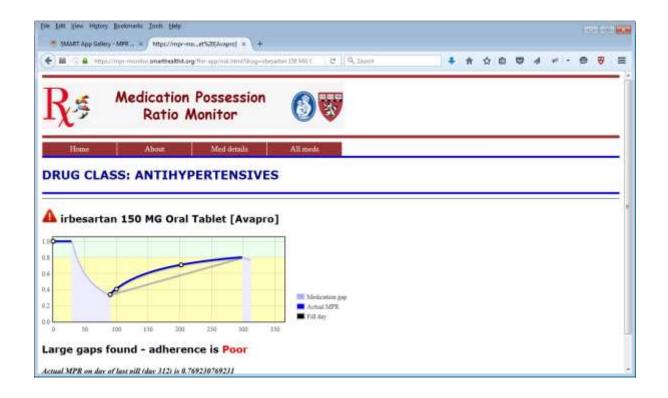
Number of patients who had a brain MRI scan at a particular age in months from 0 to 6 years (A) and in weeks from 0 to 4 months (B)

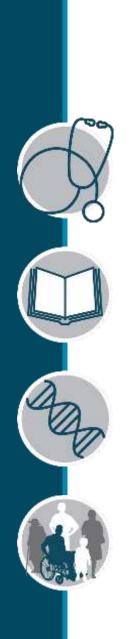


Determining a Normal Child's MRI

Generating quantitative atlases for regular intervals in pediatric development to be used for clinical brain MRI analysis




https://mpr-monitor.smarthealthit.org/fhir-app/risk.html



Tribute to...

- RPDR/I2b2 Core Team
 - Christopher Herrick
 - Michael Mendis
 - Lori Phillips
 - Janice Donahoe
 - Nich Wattanasin
 - Wayne Chan
 - Vivian Gainer
 - Alyssa Goodson
 - Mariah Mitchell
 - Martin Rees
 - Charles Wang
 - Laurie Bogosian
 - Stacey Duey
 - Andrew Cagan
 - David Wang

- Biobank Team
 - Natalie Boutin
 - Victor Castro
 - Scott Weiss
 - Beth Karlson
- SMART Team
 - Ken Mandl
 - Josh Mandel
 - Kavi Wagholikar
- Genomics Innovation Team
 - Sandy Aronson
 - Heidi Rehm
 - Calum MacRea

i2b2

I2b2 and SMART Information and Software on the Web

i2b2 Homepage (<u>https://www.i2b2.org</u>) i2b2 Software (<u>https://www.i2b2.org/software</u>) i2b2 Community Site (<u>https://community.i2b2.org</u>) SMART Platforms Homepage (<u>http://smarthealtit.org</u>)