High-throughput Population Phenotyping

Victor Castro & Vivian Gainer

Research Information Systems and Computing (RISC) Partners Healthcare

What is a High-Quality Computed Phenotype?

Phenotype = The set of features that characterize a specific patient population.

A **Computed Phenotype** is one that uses data from EHRs, both structured and narrative, to come up with and calculate the set of features that define a condition.

Why are these phenotypes important?

Codes alone are not sufficient to tell us whether someone has a condition.

Computable phenotypes were developed to use secondary data to determine, with statistical significance, whether or not someone or a population has a given condition.

History

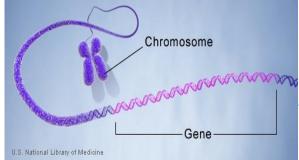
Types of computable phenotypes:

- Rules-based (eMERGE)
- Machine learning

We have worked on creating machine learning algorithms since the start of i2b2, beginning with our Driving Biology Projects (DBP). Our methods and tools have evolved and continue to evolve to streamline the process and create a phenotyping workflow that researchers can understand and use.

Partners Healthcare Biobank

- Repository of consented patient samples linked to the electronic medical record and supplemented with health information/family history from surveys.
- To date, 40,000+ patients have consented to participate and 30,000+ have provided samples. The target is 75,000 consented patients by 2018. 1,000+ patients are consented every month.
- Genomic data on ~10,000 patients is available, for free, to Partners investigators. Genomic data for another 15,000 patients (total of 25,000) will be released over the next 12-24 months.
- Supports \$82M+ in grants across Partners institutions



ethods to Develop an Electronic Medical Record Phenotype Algorithm to Compare he Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. ao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savova GK ⁷ , Agniel		Validation of electronic health record phenotyping of bipolar disorder cases and controls.
BMJ, 2013 Jan 29;346:f288. doi: 10.1136/bmj.f288. QT interval and antidepressant use: a cross sectional study of electronic health records. Castro VM ¹ , Clements CC, Murphy SN, Gainer VS, Fava M, Weilburg JB, Erb JL, Churchill SE, Kohane IS, losifescu DV. Smoller JW. Perlis RH. Losifescu DV. Smoller JW. Perlis RH. Losifescu DV. Smoller JW. Perlis RH. Los One, 2015 Aug 24;10(8):e0136651. doi: 10.1371/journal.pone.0136651. eCollection 2015. Lethods to Develop an Electronic Medical Record Phenotype Algorithm to Compare he Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. ao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savoya GK ⁷ , Agniel ³ , Churchill S ⁹ , Lee J ¹⁰ , Murphy SN ¹¹ , Plenge RM ¹² , Szolovits P ¹³ , Kohane I ⁷ , Shaw SY ³ , Karlson EW ¹ , Cai T ⁶ . Mol Psychiatry. 2014 Aug 26. doi: 10.1038/mp.2014.90. [Epub ahead of print] Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill		
health records. Castro VM ¹ , Clements CC, Murphy SN, Gainer VS, Fava M, Weilburg JB, Erb JL, Churchill SE, Kohane IS, Iosifescu DV. Smoller JW. Perlis RH. acs One, 2015 Aug 24;10(8):e0136651. doi: 10.1371/journal.pone.0136651. eCollection 2015. ethods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. ao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savova GK ⁷ , Agniel 3, Churchill S ⁹ , Lee J ¹⁰ , Murphy SN ¹¹ , Plenge RM ¹² , Szolovits P ¹³ , Kohane I ⁷ , Shaw SY ³ , Karlson EW ¹ , Cai T ⁶ . Mol Psychiatry, 2014 Aug 26. doi: 10.1038/mp.2014.90. [Epub ahead of print] Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill		
Iosifescu DV. Smoller JW. Perlis RH. LoS One, 2015 Aug 24;10(8):e0136651. doi: 10.1371/journal.pone.0136651. eCollection 2015. Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. Iao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savova GK ⁷ , Agniel ⁸ , Churchill S ⁹ , Lee J ¹⁰ , Murphy SN ¹¹ , Plenge RM ¹² , Szolovits P ¹³ , Kohane I ⁷ , Shaw SY ³ , Karlson EW ¹ , Cai T ⁶ . Mol Psychiatry, 2014 Aug 26. doi: 10.1038/mp.2014.90. [Epub ahead of print] Prenatal antidepressant exposure is associated with risk for attention- deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill		
LoS One, 2015 Aug 24;10(8):e0136651. doi: 10.1371/journal.pone.0136651. eCollection 2015. Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. Iao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savova GK ⁷ , Agniel ⁸ , Churchill S ⁹ , Lee J ¹⁰ , Murphy SN ¹¹ , Plenge RM ¹² , Szolovits P ¹³ , Kohane I ⁷ , Shaw SY ³ , Karlson EW ¹ , Cai T ⁶ . Mol Psychiatry. 2014 Aug 26. doi: 10.1038/mp.2014.90. [Epub ahead of print] Prenatal antidepressant exposure is associated with risk for attention- deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill		
Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare he Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts. ao KP ¹ , Ananthakrishnan AN ² , Kumar V ³ , Xia Z ⁴ , Cagan A ⁵ , Gainer VS ⁵ , Goryachev S ⁵ , Chen P ⁶ , Savova GK ⁷ , Agniel ⁸ , Churchill S ⁹ , Lee J ¹⁰ , Murphy SN ¹¹ , Plenge RM ¹² , Szolovits P ¹³ , Kohane I ⁷ , Shaw SY ³ , Karlson EW ¹ , Cai T ⁶ . Mol Psychiatry, 2014 Aug 26. doi: 10.1038/mp.2014.90. [Epub ahead of print] Prenatal antidepressant exposure is associated with risk for attention- deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill	oS One 2015 Aug 24:1	
Prenatal antidepressant exposure is associated with risk for attention- deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Clements CC ¹ , Castro VM ² , Blumenthal SR ¹ , Rosenfield HR ¹ , Murphy SN ³ , Fava M ⁴ , Erb JL ⁵ , Churchill	, Churchill S ⁹ , Lee J	¹⁰ , <u>Murphy SN</u> ¹¹ , <u>Plenge RM</u> ¹² , <u>Szolovits P</u> ¹³ , <u>Kohane I</u> ⁷ , <u>Shaw SY</u> ³ , <u>Karlson EW</u> ¹ , <u>Cai T</u> ⁶ .
		Prenatal antidepressant exposure is associated with risk for attention- deficit hyperactivity disorder but not autism spectrum disorder in a large health system.
	Inflamm Bowel Dis. 201	<u>Clements CC', Castro VM², Blumenthal SR', Rosenfield HR', Murphy SN³, Fava M⁴, Erb JL³, Churchill SE⁶, Kaimal AJ⁷, Doyle AE¹, Robinson EB⁸, Smoller JW⁹, Kohane IS¹⁰, Perlis RH¹.</u>
Improving case definition of Crohn's disease and ulcerative colitis in electronic medical records using natural language processing: a novel informatics approach.	Improving case	SE ⁶ , <u>Kaimal AJ</u> ⁷ , <u>Doyle AE</u> ¹ , <u>Robinson EB</u> ⁸ , <u>Smoller JW</u> ⁹ , <u>Kohane IS</u> ¹⁰ , <u>Perlis RH</u> ¹ . 3 Jun;19(7):1411-20. doi: 10.1097/MIB.0b013e31828133fd.

PARTNERS. FOUNDED BY BRIGHAM AND WOMEN'S HOSPITAL AND MASSACHUSETTS GENERAL HOSPITAL

Phenotyping the Biobank Population

Goals

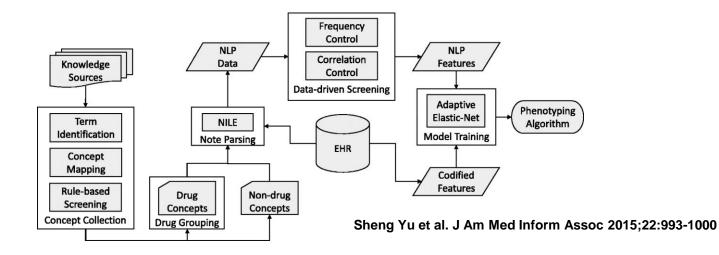
- Develop high-specificity algorithms for selected disease populations
 - Use case: genotype-phenotype association studies
- Data-driven identification of relevant disease features
- Algorithms should classify the entire population both Disease+ and Disease-
- Algorithms will be computed on regular basis to include newly-consented individuals and new data from the EHR
- Available to investigators inside the Biobank Portal i2b2 web client
 - Investigators can choose different PPVs depending on their algorithm

Phenotype Prevalence

Phenotype	Estimated Prevalence*	PPV of <u>></u> 1 ICD9/ICD10 Code
Asthma (AST)	12.0%	0.61
Bipolar Disorder (BD)	1.3%	0.39
Breast Cancer (BRCA)	4.0%	0.66
Chronic Obstructive Pulmonary Disease (COPD)	4.3%	0.33
Congestive Heart Failure (CHF)	4.4%	0.33
Coronary Artery Disease (CAD)	13.5%	0.43
Crohn's Disease (CD)	4.7%	0.57
Depression (DEPR)	16.0%	0.56
Epilepsy (EPIL)	3.9%	0.63
Gout (GOUT)	6.0%	0.84
Hypertension (HTN)	42.0%	0.77
Multiple Sclerosis (MS)	0.8%	0.52
Obesity (OBES)	48.9%	-
Rheumatoid Arthritis (RA)	3.8%	0.39
Schizophrenia (SCZ)	0.2%	0.16
Type-I Diabetes Mellitus (T1DM)	0.9%	0.16
Type-II Diabetes Mellitus (T2DM)	10.6%	-
Ulcerative Colitis (UC)	2.5%	0.48

* Prevalence is estimated based on clinician chart review of a random sample of Biobank participants.

High-throughput Phenotype Training



- Automated feature extraction
 - NLP terms identified from public knowledge sources (Medscape, Wikipedia) and mapped to UMLS CUIs
 - Terms are screened based on frequency and correlation in the data
 - Coded terms (COD) from the EHR also identified (i.e. ICD-10, CPT-4, RXNORM)

Example: Feature Selection in Coronary Artery Disease (CAD)

615 UMLS CUIs Identified in Public Clinic Information Sources (MedScape, Wikipedia)

45 CUIs met frequency thresholds in notes

13 CUIs selected by the regression algorithm

FOUNDED BY BRIGHAM AND WOMEN'S HOSPITAL AND MASSACHUSETTS GENERAL HOSPITAL CAD_NLP_alcohol CAD_NLP_angioplasty CAD_NLP_antiplateletagents CAD_NLP_coronaryarterybypassgrafting CAD_NLP_coronarytherosclerosis CAD_NLP_coronaryheartdisease CAD_NLP_creatinine CAD_NLP_creatinine CAD_NLP_electrocardiogram CAD_NLP_ischemia CAD_NLP_ischemiccardiomyopathy CAD_NLP_myocardialinfarction CAD_NLP_nitroglycerin CAD_NLP_plateletaggregationinhibitors

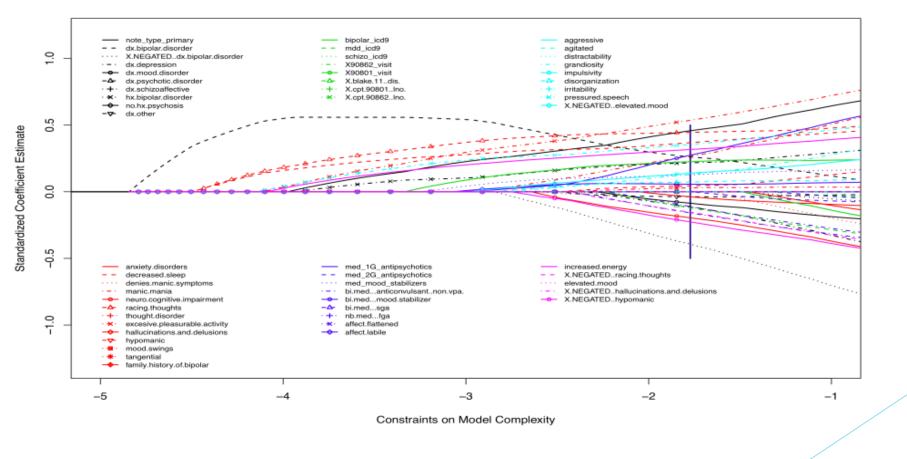
High-throughput Phenotype Training

- Minimize the chart-review bottleneck
 - Chart reviews conducted in the i2b2 workbench timeline view
 - Generate established chart review criteria
 - Concurrent chart reviews using prevalence-based sampling

Patient Number	Asthma	Breast cancer	Chronic airway obstruction (COPD)	Depression/MDD	Epilepsy	Hypertension	Ischemic stroke	Obesity	Schizophrenia	Type 1 diabetes
06150	N	Y	N	N	N	Y	N	Y	N	N
06249	N	N	N	N	N	Y	N	N	N	N
06391	N	N	N	N	N	Y	N	U	N	N
06395	N	N	N	Y	N	Р	N	Р	N	N
06500	Y	N	N	Y	N	Y	N	Y	N	N
06551	Y	N	Р	N	N	Y	N	Y	N	N
06574	N	N	Р	N	Y	Y	N	N	N	N
06580	N	N	N	N	Y	N	Y	N	N	N
06692	N	Р	N	Р	N	Y	N	Y	N	N
06769	N	N	N	N	N	Y	N	Y	N	N
06807	N	N	Y	N	N	Y	N	Y	N	N
06955	N	N	N	Р	Y	Y	N	N	N	N
07018	N	N	Р	N	N	Y	N	Y	N	N
07210	N	N	N	N	N	Y	Y	Y	N	N
07226	N	N	N	N	N	Y	N	Y	N	N
07471	N	N	N	N	N	Y	N	U	N	N

LASSO Regression

of selected features = 29



High-throughput Phenotype Training

- Standardize approach to training the phenotype models
 - Features are mapped and grouped in i2b2 schema and are defined based on C_FULLNAME
 - Standardized naming convention for NLP and Coded (COD) features
 - Simple and interpretable machine language techniques for feature shrinking and building a model.

Feature_ID	Beta (weight)	Feature Description
(Intercept)	0.548	Model Intercept (beta 0)
Epilepsy_COD_DX_Epilepsy	2.414	Count of coded diagnosis of epilepsy
Epilepsy_COD_MED_lamotrigine	0.129	Count of prescriptions for lamotrigine
Epilepsy_COD_MED_phenytoin	0.124	Count of prescriptions for phenytoin
Epilepsy_COD_PRC_HeadCT	-0.339	Count of Head CT scan procedures
patient_dxenct	-1.022	Total number of visits with a coded diagnosis

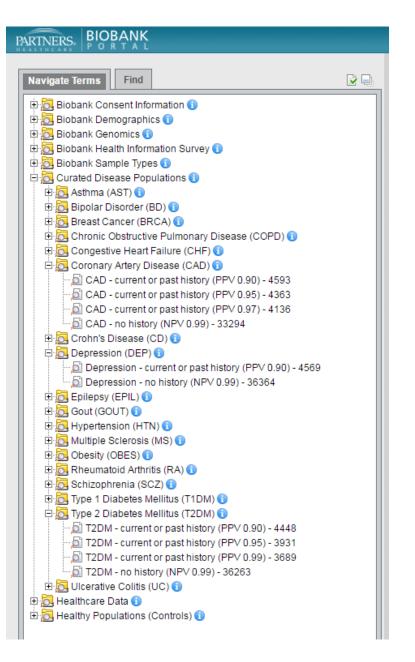
Epilepsy Algorithm Final Feature Betas

Algorithm Training Results

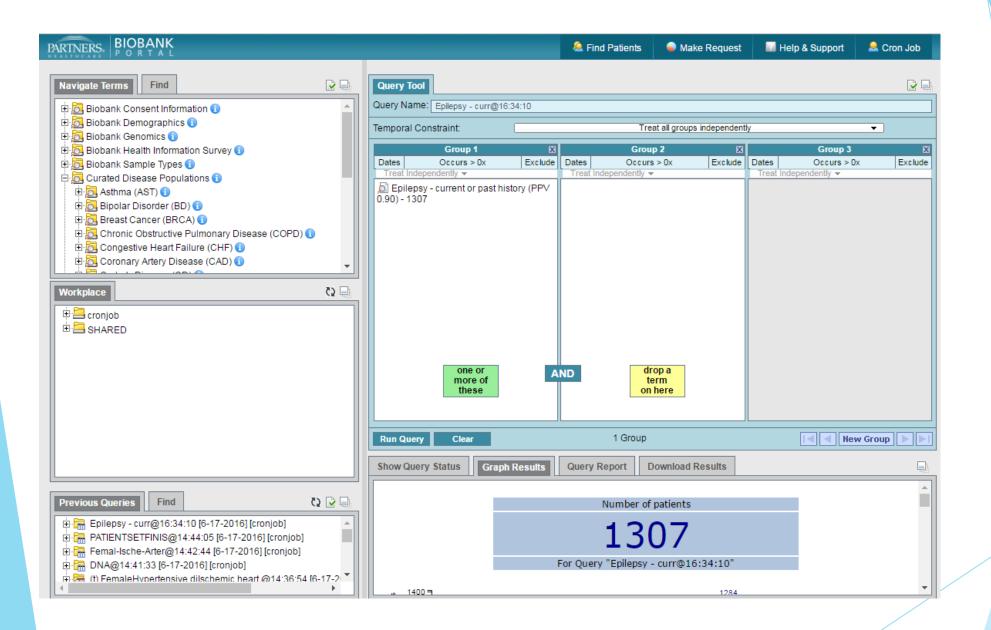
	COD+NLP /	COD Algorithms		
Phenotype	AUC	Sensitivity @PPV~0.9	AUC	Sensitivity @PPV~0.9
Asthma (AST)	0.889	0.70	0.893	0.76
Bipolar Disorder (BD)	0.920	0.28	0.822	0.23
Breast Cancer (BRCA)	0.982	0.97	0.951	0.94
Chronic Obstructive Pulmonary Disease (COPD)	0.851	0.43	0.768	0.23
Congestive Heart Failure (CHF)	0.921	0.53	0.897	0.42
Coronary Artery Disease (CAD)	0.989	0.97	0.953	0.82
Crohn's Disease (CD)	0.971	0.96	0.973	0.94
Depression (DEPR)	0.935	0.87	0.908	0.80
Epilepsy (EPIL)	0.951	0.91	0.957	0.93
Gout (GOUT)	0.848	0.95	0.870	0.93
Hypertension (HTN)	0.946	0.98	0.912	0.95
Multiple Sclerosis (MS)	0.947	0.81	0.925	0.79
Obesity (OBES)	0.954	0.85	0.948	0.87
Rheumatoid Arthritis (RA)	0.948	0.76	0.928	0.69
Schizophrenia (SCZ)	0.980	0.83	0.921	0.29
Type-I Diabetes Mellitus (T1DM)	0.990	0.84	0.972	0.78
Type-II Diabetes Mellitus (T2DM)	0.977	0.88	0.952	0.77
Ulcerative Colitis (UC)	0.962	0.87	0.967	0.88

Comparing Coded-only (COD) vs COD+NLP Algorithms

Phenotype	Sensitivity Difference COD vs COD+NLP	COD+NLP N @40k patients	COD N @40k patients	Weeks to Catch Up
Asthma (AST)	0.09	3,346	3,653	-11
Bipolar Disorder (BD)	-0.18	146	120	29
Breast Cancer (BRCA)	-0.04	1,555	1,498	5
Chronic Obstructive Pulmonary Disease (COPD)	-0.47	746	394	119
Congestive Heart Failure (CHF)	-0.20	933	744	34
Coronary Artery Disease (CAD)	-0.16	5,238	4,423	25
Crohn's Disease (CD)	-0.02	1,805	1,762	3
Depression (DEPR)	-0.08	5,587	5,126	12
Epilepsy (EPIL)	0.03	1,412	1,454	-4
Gout (GOUT)	-0.02	2,273	2,234	2
Hypertension (HTN)	-0.03	16,414	15,994	4
Multiple Sclerosis (MS)	-0.02	259	253	3
Obesity (OBES)	0.03	16,606	17,037	-3
Rheumatoid Arthritis (RA)	-0.09	1,155	1,052	13
Schizophrenia (SCZ)	-0.65	67	23	249
Type-I Diabetes Mellitus (T1DM)	-0.07	304	282	10
Type-II Diabetes Mellitus (T2DM)	-0.13	3,731	3,248	20
Ulcerative Colitis (UC)	0.02	870	884	-2



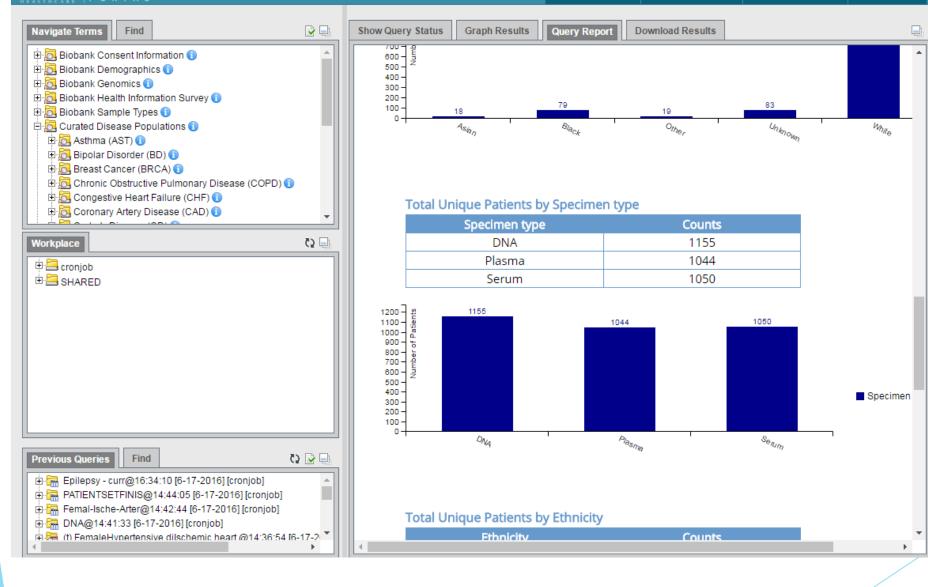
FOUNDED BY BRIGHAM AND WOMEN'S HOSPITAL AND MASSACHUSETTS GENERAL HOSPITAL



FOUNDED BY BRIGHAM AND WOMEN'S HOSPITAL AND MASSACHUSETTS GENERAL HOSPITAL

ARTNERS	BIOBANK
ANTINENS:	PORTAL

🔜 Help & Support 🛛 🚨 Cron Job



Custom Specificity / Sensitivity

- Investigators can choose different algorithm predicted probability cutoffs of the phenotype corresponding to different levels of PPV and sensitivity
- For example, a study seeking to recruit patients for a study might choose a lower cut-off since they will be screening the patients.
- Predicted probability can also be used as a continuous measure in genotypephenotype study to adjust for phenotype uncertainty.

	encounter_num	patient_num	CONCEPT_CD	provider_id	INSTANCE_NUM	VALTYPE_CD	NVAL_NUM
1	32930974	41144	Epilepsy_filterpositive_CODonly_31Mar16_yes_ppv090	@	1	N	0.92323
2	33763593	41409	Epilepsy_filterpositive_CODonly_31Mar16_yes_ppv090	@	1	N	0.94719
3	33169757	41453	Epilepsy_filterpositive_CODonly_31Mar16_yes_ppv090	@	1	N	0.81372
4	33741751	41840	Epilepsy_filterpositive_CODonly_31Mar16_yes_ppv090	@	1	N	0.97063
5	33312038	40970	Epilepsy_filterpositive_CODonly_31Mar16_yes_ppv090	@	1	N	0.95071

Summary

- Machine learning algorithms can be effectively and efficiently applied to a large population to accurately phenotype patients
- Algorithms provide flexibility to adjust sensitivity and specificity to varied use cases compared to pre-defined rules-based algorithms
- Methods and tools to optimize the building of gold-standard training sets can generate significant time-savings
- Future work:
 - Develop additional algorithms
 - Examine portability of algorithms in larger population (i.e. all patients in EHR)
 - Enhance i2b2 UI to allow users to "customize" their algorithm PPV / Sensitivity
 - Work towards a "Phenotyping Workbench" to optimize algorithm building process within the i2b2 framework.

Thanks!

Biobank Portal Team

Bhaswati Ghosh Barbara Benoit Andy Cagan Tianxi Cai Victor Castro Stacey Duey Alyssa Goodson Sergey Goryachev Reeta Metta Pourab Roy Nich Wattanasin David Wang Sheng Yu

Biobank Team

Jackie Aldama Nicole Allen Sami Amr Ashley Blau Natalie Boutin Xander Cerretani Kim Durniak Kevin Embree Ana Holzbach Irene Leon Lisa Mahanta Neeta Rathi Matilde Vickers Ellen Tsai Matt Lebo

Biobank Principal Investigators

Scott Weiss, Principal Investigator Lynn Bry, MD, PhD (BWH) Elizabeth Karlson, MD (BWH) Sue Slaugenhaupt, PhD (MGH) Jordan Smoller, MD, ScD (MGH)

Biobank Senior Leadership

Scott Weiss, M.D, Chief, Partners Personalized Medicine Anne Klibanski, MD, PHS CAO Paul Anderson, MD, PhD, BWH VP Jeff Golden, MD, BWH Pathology David Louis, MD, MGH Pathology Harry Orf, PhD, MGH VP Pearl O'Rourke, MD, PHS IRB Shawn Murphy, MD, PhD

